
No littering!

Bjarne Stroustrup
Morgan Stanley, Columbia University

www.stroustrup.com

Executive summary

• We now offer complete type- and resource-safety
• No memory corruption
• No resource leaks
• No garbage collector (because there is no garbage to collect)

• No runtime overheads (Except where you need range checks)

• No new limits on expressibility
• ISO C++ (no language extensions required)
• Simpler code

• Support
• C++ Core Guidelines: https://github.com/isocpp/CppCoreGuidelines
• GSL: https://github.com/microsoft/gsl
• Static analysis/enforcement: In Microsoft Visual Studio

• We want “C++ on steroids”
• Not some neutered subset

No littering - Stroustrup -STAC - June'16

Caveat: Not yet deployed at scale 

3

https://github.com/isocpp/CppCoreGuidelines
https://github.com/microsoft/gsl

C++ use

• About 4.5M C++ developers

• 2014-2015: increase of 200,000 developers

• www.stroustrup.com/applications.html

No littering - Stroustrup -STAC - June'16 4

The big question

• “What is good modern C++?”
• Many people want to write ”Modern C++”

• What would you like your code to look like in 5 years time?
• “Just like what I write today” is a poor answer

• Guidelines project
• https://github.com/isocpp/CppCoreGuidelines
• Produce a useful answer

• Implies tool support and enforcement

• Enable many people to use that answer
• For most programmers, not just language experts

No littering - Stroustrup -STAC - June'16 5

Overview

• Pointer problems
• Memory corruption

• Resource leaks

• Expensive run-time support

• Complicated code

• The solution
• Eliminate dangling pointers

• Eliminate resource leaks

• Library support for range checking and nullptr checking

• And then deal with casts and unions

No littering - Stroustrup -STAC - June'16 6

I like pointers!

• Pointers are what the hardware offers
• Machine addresses

• For good reasons
• They are simple

• They are general

• They are fast

• They are compact

• C’s memory model has served us really well
• Sequences of objects

• But pointers are not “respectable”
• Dangerous, low-level, not mathematical, …

• There is a huge ABP crowd

No littering - Stroustrup -STAC - June'16

First element One beyond the end

7

Lifetime can be messy

• An object can have
• One reference

• Multiple references

• Circular references

• No references (leaked)

• Reference after deletion (dangling pointer)

No littering - Stroustrup -STAC - June'16 8

Ownership can be messy

No littering - Stroustrup -STAC - June'16

static on stack memberon heap

• An object can be
• on stack (automatically freed)

• on free store (must be freed)

• n static store (must never be freed)

• in another object
9

c

Resource management can be messy

No littering - Stroustrup -STAC - June'16

Thread
id Lock id

Map key

Lock id

• Objects are not just memory

• Sometimes, significant cleanup is needed
• File handles

• Thread handles

• Locks

• … 10

Access can be messy

• Pointers can
• point outside an object (range error)

• be a nullptr (useful, but don’t dereference)

• be unititialized (bad idea)

No littering - Stroustrup -STAC - June'16 11

Eliminate all leaks and all memory corruption

• Every object is constructed before use
• Once only

• Every fully constructed object is destroyed
• Once only

• Every object allocated by new must be deleted

• No scoped object must be deleted (it is implicitly destroyed)

• No access through a pointer that does not point to an object
• Read or write

• Off the end of an object (out of range)

• To deleted object

• To “random” place in memory (e.g., uninitialized pointer)

• Through nullptr (originally: “there is no object at address zero”)

• That has gone out of scope
No littering - Stroustrup -STAC - June'16 12

Current (Partial) Solutions

• Ban or seriously restrict pointers
• Add indirections everywhere

• Add checking everywhere

• Manual memory management
• Combined with manual non-memory resource management

• Garbage collectors
• Plus manual non-memory resource management

• Static analysis
• To supplement manual memory management

• “Smart” pointers
• Starting with counted pointers

• Functional Programming
• Eliminate pointers

No littering - Stroustrup -STAC - June'16 13

Current (Partial) Solutions

• These are old problems and old solutions
• 40+ years

• Manual resource management doesn’t scale

• Smart pointers add complexity and cost

• Garbage collection is at best a partial solution
• Doesn’t handle non-memory solutions (“finalizers are evil”)
• Is expensive at run time
• Is non-local (systems are often distributed)
• Introduces non-predictability

• Static analysis doesn’t scale
• Gives false positives (warning of a construct that does not lead to an error)
• Doesn’t handle dynamic linking and other dynamic phenomena
• Is expensive at compile time

No littering - Stroustrup -STAC - June'16 14

Constraints on the solution

• I want it now
• I don’t want to invent a new language

• I don’t want to wait for a new standard

• I want it guaranteed
• “Be careful” isn’t good enough

• Don’t sacrifice
• Generality

• Performance

• Simplicity

• Portability

No littering - Stroustrup -STAC - June'16 15

A solution

• Be precise about ownership
• Don’t litter
• Offer static guarantee

• Eliminate dangling pointers
• Static guarantee

• Make general resource management implicit
• Hide every explicit delete/destroy/close/release
• “lost of explicit annotations” doesn’t scale

• becomes a source of bugs

• Test for nullptr and range
• Minimize run-time checking
• Use checked library types

• Avoid other problems with pointers
• Avoid cast and un-tagged unions

No littering - Stroustrup -STAC - June'16 16

No resource leaks

• We know how
• Root every object in a scope

• vector<T>
• string
• ifstream
• unique_ptr<T>
• shared_ptr<T>
• lock_guard<T>

• RAII
• “No naked new”
• “No naked delete”

• Constructor/destructor
• “since 1979, and still the best”

No littering - Stroustrup -STAC - June'16 17

Dangling pointers – the worst problem

• One nasty variant of the problem

void f(X* p)

{

// …

delete p; // looks innocent enough

}

void g()

{

X* q = new X; // looks innocent enough

f(q);

// … do a lot of work here …

q->use(); // Ouch! Read/scramble random memory

} No littering - Stroustrup -STAC - June'16 18

Dangling pointers

• We must eliminate dangling pointers
• Or type safety is compromised

• Or memory safety is compromised

• Or resource safety is compromised

• Eliminated by a combination of rules
• Distinguish owners from non-owners

• E.g., gsl::owner<int*>

• Something that holds an owner is an owner

• Don’t forget malloc(), etc.

• Assume raw pointers to be non-owners

• Catch every attempt for a pointer to “escape” into a scope
enclosing its owner’s scope

• return, throw, out-parameters, long-lived containers, …

No littering - Stroustrup -STAC - June'16 19

Dangling pointers

• Ensure that no pointer outlives the object it points to

void f(X* p)

{

// …

delete p; // bad: delete non-owner

}

void g()

{

X* q = new X; // bad: assign object to non-owner

f(q);

// … do a lot of work here …

q->use(); // we never get here

} No littering - Stroustrup -STAC - June'16 20

How to avoid/catch dangling pointers

• Rules (giving pointer safety):
• Basic rule: no pointer must outlive the object it points to
• Practical rules

• Don’t transfer to pointer-to-a-local to where it could be accessed by a caller

• A pointer passed as an argument can be passed back as a result
• Essential for real-world pointer use

• A pointer obtained from new can be passed back

• But we have to remember to eventually delete it

int* f(int* p)
{

int x = 4;
return &x; // No! would point to destroyed stack frame

return new int{7}; // OK: doesn’t dangle, but we must “remember” to delete

return p; // OK: came from caller

}
No littering - Stroustrup -STAC - June'16 21

How do we represent ownership?

• Mark an owning T*: gsl::owner<T*>

• Initial idea (2005 and before)
• Yet another kind of “smart pointer”

• owner<T*> would hold a T* and an “owner bit”

• Costly: bit manipulation

• Not ABI compatible

• Not C compatible

• Finds errors too late (at run time)

• So gsl::owner
• Is a handle for static analysis

• Is documentation

• Is not a type with it’s own operations

• Incurs no run-time cost (time or space)

• Is ABI compatible

• template<typename T> using owner = T;No littering - Stroustrup -STAC - June'16 22

GSL is our Guidelines Support Library

Owners and pointers
• Every object has one owner

• An object can have many pointers to it

• No pointer can outlive the scope of the owner it points to

No littering - Stroustrup -STAC - June'16

owner

Object

pointer

pointer

pointer

Call stack

Object

owner

• For an object on the free store the owner is a pointer

• For a scoped object the owner is the scope

• For a member object the owner is the enclosing object

pointer

23

How do we manage ownership?

• High-level: Use an ownership abstraction
• Simple and preferred

• E.g., unique_ptr, shared_ptr, vector, and map

• Low-level: mark owning pointers owner
• An owner must be deleted or passed to another owner

• A non-owner may not be deleted

• This is essential in places but does not scale

• Applies to both pointers and references

No littering - Stroustrup -STAC - June'16 24

How do we manage ownership?

• owner is intended to simplify static analysis
• Necessary inside ownership abstractions

• owners in application code is a sign of a problem
• Usually, C-style interfaces

• “Lots of annotations” doesn’t scale

• Becomes a source of errors

No littering - Stroustrup -STAC - June'16 25

GSL: owner<T>

• How do we implement ownership abstractions?
template<SemiRegular T>

class vector {

public:

// …

private:

owner<T*> elem; // the anchors the allocated memory

T* space; // just a position indicator

T* end; // just a position indicator

// …

};

• owner<T*> is just an alias for T*

No littering - Stroustrup -STAC - June'16 26

GSL: owner<T>

• How about code we cannot change?
• ABI stability

void foo(owner<int*>); // foo requires an owner

void f(owner<int*> p, int* q, owner<int*> p2, int* q2)
{

foo(p); // OK: transfer ownership
foo(q); // bad: q is not an owner
delete p2; // necessary
delete q2; // bad: not an owner

}

• A static analysis tool can tell us where our code mishandles ownership
No littering - Stroustrup -STAC - June'16 27

Our solution: A cocktail of techniques

• Not a single neat miracle cure
• Rules (from the “Core C++ Guidelines”)

• Statically enforced

• Libraries (STL, GSL)
• So that we don’t have to directly use the messy parts of C++

• Reliance on the type system
• The compiler is your friend

• Static analysis
• To extend the type system

• None of those techniques is sufficient by itself

• Enforces basic ISO C++ language rules

• Not just for C++
• But the “cocktail” relies on much of C++

No littering - Stroustrup -STAC - June'16 28

Details (aka engineering)

• Invention is 1% inspiration and 99% perspiration

• The simple lifetime and ownership model needs to be enforced by many dozens
of detailed checks
• Be comprehensive
• Minimize false positives
• Scale to industrial programs

• Fast analysis is essential – local analysis only

• Allow for gradual adoption
• Provide coherent toolsets for all platforms

No littering - Stroustrup -STAC - June'16 29

“Static” is not quite as flexible as “dynamic”

• Classify pointers according to lifetime
int glob = 666;

vector<int*> f(int* p)
{

int x = 4;
int* q = new int{7}; // ignore ownership for now
vector<int*> res = {p, &x, q, &glob}; // potentially bad: mix lifetimes
return res; // Bad: return { unknown, &local, free store, &global }

}

• Don’t mix different lifetimes in an array (overly conservative?)
• If you must, encapsulate

• Don’t let return statements mix lifetimes

No littering - Stroustrup -STAC - June'16 30

“Static” is not quite as flexible as “dynamic”

• Classify pointers according to ownership
int glob = 666;

vector<int*> f(int* p)

{

int x = 4;

owner<int*> q = new int{7};

vector<int*> res = {p, &x, q, &glob}; // potentially bad: mix ownership

return res; // Bad: return {unknown, &local, &owner, &global}

}

• Don’t mix different ownerships in an array
• If you must, encapsulate

• Don’t let different return statements mix ownership

No littering - Stroustrup -STAC - June'16 31

Ownership and pointers

• Owners are a tree
• Except for shared_ptr: a DAG
• Simple
• efficient
• Minimal resource retention
• No ownership cycles

• Owners can be invalidated
• Catch simple cases at compile time
• Use shared_ptr and/or nullptr checks for not-so-simple cases

• Pointers
• can only refer to live objects

• To objects with a live owner
• To objects “back or to the same level” in a stack

• can have cycles
No littering - Stroustrup -STAC - June'16 32

Concurrency

• Use scopes and shared_ptr to keep threads alive as needed

• A thread is a container (of pointers)
• The usual rules for containers of pointers apply
• std::tread

• May or may not outlive its scope
• Bad
• we must conservatively assume that it lives forever

• gsl::raii_thread
• Joins

• so it is a local container

• gsl::detached_thread
• Detaches

• so we must treat it as a non-local container

No littering - Stroustrup -STAC - June'16 33

Owner invalidation

• Some cases are simple

void f()

{

auto p = new int{7};

delete p; // invalidate p

*p = 9; // bad: must be prevented

}

• Such examples can be handled by static analysis
• Avoid “naked new” and “naked delete”

No littering - Stroustrup -STAC - June'16 34

Owner invalidation

• Some cases are less simple

void g(int* q) { *q = 9; } // looks innocent

void f()
{

vecor<int> v {7};
auto q = &v[0];
std::thread t {g,q};
t.detatch(); // often a bad idea

}

// the thread may outlive v

• Such examples can be handled by static analysis
• Avoid unscoped threads
• In an emergency, use shared_ptr to defeat “false positives”

No littering - Stroustrup -STAC - June'16 35

Owner invalidation

• Some cases are less simple

void g(int* q) { *q = 9; } // looks innocent

auto f()

{

vecor<int> v {7};

auto q = &v[0];

return make_shared(thread,g,q); // bad

}

• Such examples can be handled by static analysis

No littering - Stroustrup -STAC - June'16 36

Why not “just use smart pointers”?

• Complexity and (sometimes) cost
• E.g., different versions of functions for different kinds of pointers

• Use only when you need to manipulate ownership
• unique_ptr for unique ownership

• guard against exceptions
• Return pointer-to-base in OOP

• shared_ptr for shared ownership
• For cases where you can’t identify a single owner
• Not for guarding against exceptions
• Not for returning objects from the free store
• More expensive that raw pointers – use counts
• Can led to need for weak_ptrs
• Can lead to “GC delays”

• Remember
• Local variables (e.g., handles)
• Move semantics

No littering - Stroustrup -STAC - June'16 37

Static analysis (integrated)

No littering - Stroustrup -STAC - June'16 38

Dangling pointer summary

• Simple:
• Never let a “pointer” escape to where it can refer to its object after that object is destroyed

• It’s not just pointers
• All ways of “escaping”

• return, throw, place in long-lived container, threads, …

• Same for containers of pointers
• E.g. vector<int*>, unique_ptr<int>, threads, iterators, built-in arrays, …

• Same for references

• We need a formal paper/proof

• We need to demonstrate scaling
• 1M line code bases

No littering - Stroustrup -STAC - June'16 39

Other problems

• Other ways of breaking the type system
• Unions: use variant

• Casts: don’t use them outside abstractions

• …

• Other ways of misusing pointers
• Range errors: use GSL::span<T>

• nullptr dereferencing: use GSL::not_null<T>

• Wasteful ways of addressing pointer problems
• Misuse of smart pointers

• …

• “Just test everywhere at run time” is not an acceptable answer
• We want comprehensive guidelines

No littering - Stroustrup -STAC - June'16 40

GSL::span<T>

• Common interface style
• major source of bugs
void f(int* p, int n) // what is n? (How would a tool know?)
{

p[7] = 9; // OK?
for (int i=0; i<n; ++i) p[i] = 7; // OK?

}

• Better
void f(span<int> a)
{

a[7] = 9; // OK? Checkable against a.size()
for (int& x : a) x = 7; // OK

}

No littering - Stroustrup -STAC - June'16 41

GSL::span<T>

• Common style
void f(int* p, int n);

int a[100];

// …

f(a,100);

f(a,1000); // likely disaster

No littering - Stroustrup -STAC - June'16

• Better

void f(span<int> a)

int a[100];

// …

f(span<int>{a});

f(a);

f({a,1000}); // easily checkable

• “Make simple things simple”
• Simpler than “old style”

• Shorter

• At least as fast

42

nullptr problems

• Mixing nullptr and pointers to objects
• Causes confusion
• Requires (systematic) checking

• Caller
void f(char*);

f(nullptr); // OK?

• Implementer
void f(char* p)
{

if (p==nullptr) // necessary?
// …

}

• Can you trust the documentation?

• Compilers don’t read manuals, or comments

• Complexity, errors, and/or run-time cost
No littering - Stroustrup -STAC - June'16 43

GSL::not_null<T>

• Caller
void f(not_null<char*>);

f(nullptr); // Obvious error: caught be static analysis

char* p = nullptr;

f(p); // Constructor for not_null can catch the error

• Implementer
void f(not_null<char*> p)

{

// if (p==nullptr) // not necessary

// …

}

No littering - Stroustrup -STAC - June'16 44

GSL::not_null<T>

• not_null<T>
• A simple, small class

• Should it be an alias like owner?

• not_null<T*> is T* except that it cannot hold nullptr

• Can be used as input to analyzers
• Minimize run-time checking

• Checking can be “debug only”

• For any T that can be compared to nullptr

No littering - Stroustrup -STAC - June'16 45

To summarize

• Type and resource safety:
• RAII (scoped objects with constructors and destructors)

• No dangling pointers

• No leaks (track ownership pointers)

• Eliminate range errors

• Eliminate nullptr dereference

• That done, we attack other sources of problems
• Logic errors

• Performance bugs

• Maintenance hazards

• Verbosity

• …

No littering - Stroustrup -STAC - June'16 46

Current state: the game is changing dramatically

• Papers
• B. Stroustrup, H. Sutter, G. Dos Reis: A brief introduction to C++'s model for type- and resource-safety.
• H. Sutter and N. MacIntosh: Preventing Leaks and Dangling
• T. Ramananandro, G. Dos Reis, X Leroy: A Mechanized Semantics for C++ Object Construction and

Destruction, with Applications to Resource Management

• Code (MIT license)

• https://github.com/isocpp/CppCoreGuidelines
• https://github.com/microsoft/gsl
• Static analysis: experimental versions available (Microsoft)

• Videos
• B. Stroustrup: : Writing Good C++ 14
• H. Sutter: Writing good C++ 14 By Default
• G. Dos Reis: Contracts for Dependable C++
• N. MacIntosh: Static analysis and C++: more than lint
• N. MacIntosh: A few good types: Evolving array_view and string_view for safe C++ code

No littering - Stroustrup -STAC - June'16 47

We are not unambitious (rough seas ahead)

• Type and resource safety
• No leaks
• No dangling pointers

• No bad accesses

• No range errors
• No use of uninitialized objects
• No misuse of

• Casts
• Unions

• We think we can do it
• At scale

• 4+ million C++ Programmers, N billion lines of code

• Zero-overhead principle

No littering - Stroustrup -STAC - June'16 48

Questions?

• Type- and Resource-safe C++
• No garbage collector (because there is no garbage to collect)

• No runtime overheads (Except necessary range checks)

• No new limits on expressibility

• ISO C++

• Simpler code

No littering - Stroustrup -STAC - June'16 49

C++ Information
• The C++ Foundation: www.isocpp.org

• Standards information, articles, user-group information

• Bjarne Stroustrup: www.stroustrup.com
• Publication list, C++ libraries, FAQs, etc.

• A Tour of C++: All of C++ in 180 pages

• The C++ Programming Language (4th edition): All of C++ in 1,300 pages

• Programming: Principles and Practice using C++ (2nd edition): A textbook

• The ISO C++ Standards Committee: www.open-std.org/jtc1/sc22/wg21/
• All committee documents (incl. proposals)

• Videos
• Cppcon: https://www.youtube.com/user/CppCon 2014, 2015

• Going Native: http://channel9.msdn.com/Events/GoingNative/ 2012, 2013

• Guidelines: https://github.com/isocpp/CppCoreGuidelines

No littering - Stroustrup -STAC - June'16 50

http://www.isocpp.org/
http://www.stroustrup.com/
http://www.open-std.org/jtc1/sc22/wg21/
https://www.youtube.com/user/CppCon 2014
http://channel9.msdn.com/Events/GoingNative/
https://github.com/isocpp/CppCoreGuidelines

