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SLX FPGA - Automated Workflow for HLS

Hot spots

Memory Access Patterns

Data Dependencies



5

The SLX Automated Optimization Engine
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Algorithm Development Cycle
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Push button results

Kalman Filter, download here

62x Speed-up with SLX FPGA

Black-Scholes & Heston, download here

29x Speed-up with SLX FPGA

SHA-3 Algorithm, download here 

600x Speed-up with SLX FPGA

Silexica white Papers (No STAC Benchmark)
www.silexica.com

https://www.silexica.com/wp-content/uploads/2019/07/Facilitating-High-Level-Synthesis-from-MATLAB-generated-C-C.pdf
https://www.silexica.com/wp-content/uploads/2019/10/Accelerating-Financial-Applications-With-SLX-FPGA.pdf
https://www.silexica.com/wp-content/uploads/2019/10/Using-SLX-FPGA-for-performance-optimization-of-SHA-3-for-HLS-3.pdf
https://www.silexica.com/wp-content/uploads/2019/10/Accelerating-Financial-Applications-With-SLX-FPGA.pdf

