
FPGA Accelerators:
How to beat RTL design latency with C++ in a 

fraction of the time

Stephane Gauthier

Product Manager

gauthier@silexica.com



2

FPGA Acceleration

Latency & Throughput
(Time in Market)

Long Development Cycles
Designer Scarcity

Limited Toolset

Algorithm Development
(Time to Market)



3

High Level Synthesis (HLS)

C/C++

RTL

Directives

HLS 
Compiler

Algorithm

Architectural Exploration

Manual Process



4

SLX FPGA - Automated Workflow for HLS

Hot spots

Memory Access Patterns

Data Dependencies



5

The SLX Automated Optimization Engine

SLX
Optimization 

Engine

Models Fast Performance & 
Area Estimates

Resource 
Constraints

Deep Profiler

Models

Interface 
Bandwidth HLS Directives

(Pragmas)

User Testbench

User Provided 
Configuration

Explores >100Ks of design 
space points in seconds



6

Algorithm Development Cycle

Coding ImpVerification

Architectural Exploration

Architectural Exploration

Traditional 

FPGA Flow

(RTL)

High Level 

Synthesis Flow

(C/C++)

SLX Flow

New Algo 

Available TTM



7

Push button results

Kalman Filter, download here

62x Speed-up with SLX FPGA

Black-Scholes & Heston, download here

29x Speed-up with SLX FPGA

SHA-3 Algorithm, download here 

600x Speed-up with SLX FPGA

Silexica white Papers (No STAC Benchmark)
www.silexica.com

https://www.silexica.com/wp-content/uploads/2019/07/Facilitating-High-Level-Synthesis-from-MATLAB-generated-C-C.pdf
https://www.silexica.com/wp-content/uploads/2019/10/Accelerating-Financial-Applications-With-SLX-FPGA.pdf
https://www.silexica.com/wp-content/uploads/2019/10/Using-SLX-FPGA-for-performance-optimization-of-SHA-3-for-HLS-3.pdf
https://www.silexica.com/wp-content/uploads/2019/10/Accelerating-Financial-Applications-With-SLX-FPGA.pdf

