
Pandas UDF
Scalable Analysis with Python and PySpark

Li Jin, Two Sigma Investments



About Me

• Li Jin (icexelloss)

• Software Engineer @ Two Sigma 

Investments

• Analytics Tools Smith

• Apache Arrow Committer

• Other Open Source Projects:

– Flint: A Time Series Library on Spark

2



Important Legal Information

• The information presented here is offered for informational purposes only and should not be used for any other purpose 

(including, without limitation, the making of investment decisions). Examples provided herein are for illustrative purposes 

only and are not necessarily based on actual data. Nothing herein constitutes: an offer to sell or the solicitation of any offer

to buy any security or other interest; tax advice; or investment advice. This presentation shall remain the property of Two 

Sigma Investments, LP (“Two Sigma”) and Two Sigma reserves the right to require the return of this presentation at any time. 

• Some of the images, logos or other material used herein may be protected by copyright and/or trademark. If so, such 

copyrights and/or trademarks are most likely owned by the entity that created the material and are used purely for 

identification and comment as fair use under international copyright and/or trademark laws. Use of such image, copyright 

or trademark does not imply any association with such organization (or endorsement of such organization) by Two Sigma, 

nor vice versa.

• Copyright © 2018 TWO SIGMA INVESTMENTS, LP. All rights reserved

3



Outline

• Overview: Data Science in Python and Spark

• Pandas UDF in Spark 2.3

• Ongoing work

4



Overview: Data Science in Python and Spark

5



Predictive Modeling

Read Data
Data 

Cleaning

Data 
Manipulation 

Feature 
Engineering

Model 
Training

Model 
Testing

6



Predictive Modeling (Python)

Read Data
Data 

Cleaning

Data 
Manipulation 

Feature 
Engineering

Model 
Training

Model 
Testing

pandas pandas

numpy

pandas

numpy

scipy

sklearn sklearn

7



Predictive Modeling (Spark)

Read Data
Data 

Cleaning

Data 
Manipulation 

Feature 
Engineering

Model 
Training

Model 
Testing

Spark SQL Spark SQL Spark SQL

Spark ML

Spark ML Spark ML

8



The Problem…Feature Gap

• Many functionality in Python is not available or easy in Spark 

9



Stack Overflow Answer: Forward Fill (Python)

10



Stack Overflow Answer: Forward Fill (Spark)

11



Stack Overflow Answer: Forward Fill (Spark)

12



Feature Gap: Forward Fill

• Spark SQL:

– Previous/Next observation 

• Python:

– Previous/Next observation

– Interpolation

• Linear

• Quadratic

• …

13



Feature Gap between Spark and Python

• Data Cleaning and Manipulation
– Fill missing values (pandas.DataFrame.fillna)

– Rank features (scipy.stats.percentileofscore)

– Exponential moving average (pandas.DataFrame.ewm)

– Power transformations (scipy.stats.boxcox)

– …

• Modeling Training
– …

14



Spark and Python

Spark

Scalable

Python

Functionality?

15



Pandas UDF in Spark 2.3

16



Strength of Spark and Python

• How (Spark SQL)

– For each row

– For each group

– Over rolling window

– Over entire data

– …

• What (Python)

– Filling missing value

– Rank features

– …

17



Combine What and How: PySpark UDF

• Interface for extending Spark with native Python libraries

• UDF is executed in a separate Python process

• Data is transferred between Python and Java

18



Existing UDF 

• Python function on each Row

• Data serialized using Pickle

• Data as Python objects (Python integer, Python lists, …)

19



Existing UDF (Functionality)

• How (Spark SQL)

– For each row

– For each group

– Over rolling window

– Over entire data

– …

• What (Python)

– Filling missing value

– Rank features

– …

Most relational functionality is 

taken away

20



Existing UDF (Usability)

v – v.mean() / v.std()

groupby year month

21



Existing UDF (Usability)

80% of the code is 

boilerplate

22



Existing UDF (Performance)
8 Mb/s 

91.8% in 

Ser/DeserProfile UDF

lambda x: x + 1

23



Challenge

• More expressive API

• Efficient data transfer between Java and Python (Serialization)

• Efficient data operation in Python

24



Pandas UDF in Spark 2.3: Scalar and Grouped 

Map

25



Existing UDF vs Pandas UDF

Existing UDF

• Function on Row

• Pickle serialization

• Data as Python objects

Pandas UDF

• Function on Row, Group and 

Window

• Arrow serialization

• Data as pd.Series (for column) and 

pd.DataFrame (for table)

26



Apache Arrow

• In memory columnar format for data analysis

• Low cost to transfer between systems

27



Apache Arrow

Before With Arrow



Scalar

Serialize row batch to pd.Series

using Arrow

Apply function (N -> N mapping) 

on pd.Series

Spark 

Partition

29



Scalar Example: millisecond to timestamp

30



Scalar Example: cumulative density function

31



Grouped Map

• Operations on Groups of Rows

– Each group: N -> Any

– Similar to flatMapGroups and “groupby apply” in Pandas

32



Grouped Map

Key

A

B

C

Key

A

A

B

Key

A

A

A

Key

B

B

C

groupBy
Serialize group

to pd.DataFrame

using Arrow

Apply function

(pd.DataFrame ->

pd.DataFrame)

for each group

Key

A

A

A

Key

B

B

C

33



Grouped Map Example: Backward Fill

34



Grouped Map Example: Model Fitting

35



Grouped Map Example: Model Fitting

Define 

constants 

and output 

schema

36



Grouped Map Example: Model Fitting

Define model 

(linear 

regression)

37



Improvements and limitations

38



Improvement (Usability)

Before After

39



Improvement (Performance)

https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html

40



Pandas UDF limitations

• Must split data

• (Grouped Map) Each group must fit entirely in memory

41



Ongoing Work

42



Pandas UDF Roadmap

• Spark-22216

• Released in Spark 2.3
– Scalar

– Grouped Map

• Ongoing
– Grouped Aggregate (not yet released)

– Window (work in progress)

– Memory efficiency

– Complete type support (struct type, map type)

43



Thank you

44


