Talent Shortages in HW Verification:
Can ML Plug the Gaps?

Adam Sherer, Account Technical Executive, Cadence Design Systems

October 2023 cadence

Agenda

 Verification complexity outpacing engineering availability
» Deepening data deluge defines debug doldrums

» Machine learning opportunities to enable talent efficiency

cadence

Verification Complexity Grows Exponentially
And avalilable verification engineers grows arithmetically

PN

.
ﬁ-_i-l_ Peripheral
BUS

Logic

Register HEMORY

 Verification scales exponentially with states of design: 2”(storage elements)
- Includes latches, registers, flops, memory-mapped I/O, and embedded SW data memory

« Complete verification: only enter specified states and never enter any other state

* Pragmatic goal is comprehensive verification

- 100K gate pure digital design may contain 10K storage bits = 2210000 possible states

- Multi-FPGA/ASIC systems are 10’s of millions to billions of storage bits
cadence

Engineering Efficiency Lost Throughout the Flow

Planning &
Configuration
JES 7 Tette N
Debug & _R._En-gine Generat_.ed_.
INEIVETS :> s

QYD

COST EFFICIENCY TaT

Efficiency analyzing failures,
root cause identification

Standard Data

Execut|0n/ TaT EFFICIENCY QUALITY
eI \—‘ Focus compute resources on

Efficiency executing up to
millions of tests in regression

gaps in verification

— ®
© 2023 Cadence Design Systems, Inc. All rights reserved. c a d e n c e

Verification Challenge — Regression Debug

Which failures are most critical?

 Integrating and verifying multiple (10s-100s) IPs

- Each of the IP Is constantly changing, evolving, improving

* Week to week, block and system level testing results in test failures

« Determining the root cause of the failure requires multiple engineers and
considerable time

cadence

Functional Verification Debug — Traditional Process

=§ 8

imulati gt am submits
simu ?nono m yd ign updates
emulation " (commi its)

&\\\\\\\\\

Bug in File F1, Line X
Observed on signal(s) $1,52,53 time TT

»

Debugging test failures inregression results

Failure Root cause
found

cadence

Automated Machine Learning Bucketing of Regression Failures

« Manual failure analysis of
regression is very costly
and inefficient

Runs

R [Rons|~~ | B - w - Failure

Index Name s message
[failed]

; Qs g - Automated failure analysis

10 © /uart_tests/apb_uart_rx_tx © failed -

Bug

1 © /uart_tests/apb_uart_n_tx O failed \\

14 © /uart_tests/uart_apb_incr_data © falled

15 © /uart tests/uart_apb,incr data Qfalled | —
16 © /uart_tests/uart_apb_incr_data O failed

- Automate failure classification using

17 © fuart.
18 © fuart

19 2

uart_apb_incr_data O failed

Coherency Mismatch —

uart_apb_incr_data O failed

. .
2 o e o 0 et machine learni ng
2 © /uart_tests/apb_uart_rx_tx © failed
3 © /uart_tests/uart_apb_incr_data O failed Transaction
2 © /uart_tests/apb_uart_rx_tx O failled—1 out of Order
3 © /uarttests/uart_apb_incr_data © failed = =
5 & /uart_tests/apb_uart_rx_tx © failed @) R e CO g n I Z e p atte rn S I n any ru n -
6 2 Juart_tests/uart_apb_incr_data © failed
9 © /uart_tests/apb_uart_rx_tx © failed -
10 © /uart_tests/apb_uart_rx_tx ©Q failed Opcaode Mismatch b aS e d attr I b u te S
1 © /uart_tests/apb_uart_rx_tx © failed T
12 0 apb_uart_rx_ux O failed Mem Access Violation
13 O/ uai _incr_data © failed
15 art apb_incr_data O faled .
“ . 0 i pecre e — Error message, test name, run time, etc.
17 © /uart tests/uart_apb_incr_data © failed
18 © /uart_tests/uart_apb_incr_data © failed
27 2 fuart tests/apb_uart_rx tx O failed
28 & /uart_tests/apb_uart_rx_tx © failed
29 4 /uart_tests/apb_uart_rx_tx O failed —|
30 & /uart_tests/apb_uart_rx_tx © failed
31 2 Juart_tests/uart_apb_incr_data © failed
33 & /uart_tests/uart_apb_incr_data © failed
34 2 Juart_tests/uart_apb_incr_data © failed
35 2 fuart_tests/uart_apb_incr_data © failed
s . " 4 O ol

cadence

Machine Learning to Identify What Caused Tests to Fall

* Identify and validate the commit that caused __ ==
the failure EDL L = J

* Identify most likely source of failing testcase

Revision ~ Code ~ Logs ~ TestResults ~ gygReports

- Automatically validates and isolates potential [g?%
source issues by removing and rerunning the
tests et

TEST Bug/Ri icti TEST
g/Risk Prediction
FAIL - [Model] ‘ PASS

“Baseline” revision /_\

.
% % X / X x Repair Code to Validate Bug
Revision#t 108 108 110 111 112\ 113 Fl:l 115 116 117 118 119 120 }121 122
Risk Prediction 24 0101 o02\a2 /b7 02]01]01 b2 - -
_/ LOW RISK HIGH RISK I s T
Time of day, file ownership and complexity Bug
Report

- More users increase the risk.
- Certain users may have a history of bad commits

Single Committer Many Committers Everyone

cadence

Simulation Level ML to Improve Random Verification

* Remove redundant runs
« Spread out the verification space exposure
- Reduce high hit areas
- Increase low hit areas
» Use coverage as proxy to spread out verification of interesting design states

« Use failures as an indicator of important focus points (cousin bug hunting)

Design States
100 1-bit registers — 103° potential states

Coverage Space proxy for

Verification States verification and design states

10 4-bit rand variables — 1012 potential states

\J
Goal to hit
coverage holes

i

Explores around state space
that created interesting Goal to expose

scenarios .
failures

cadence

ML Analytics to Expose Patterns Sensitivity
« Sensitivity analysis § lgg
» Run distribution 5 ©

« Hit ratio analysis

o

20 -l-II __IlI ll-_IIII-II II‘I--IIII‘ll III_I-I ‘

1 35 7 911131517192123252729313335373941434547
Test/Testbench Features

Hit ratio analysis

. _ Random variable analysis
Original Regression: 10,000 CPU hrs

ML Regression: 100 CPU hrs

1.0 1.0

Variable: cfg::alive_interval

Hit Ratio

0.8

0.6

0.4

0.2

Coverbins

0.8

0.6

Hit Ratio

0.4

0.2

ot e e \"1
£ b .ﬂ?i
o . ':-

. &

eI T a s ST P TR

-

.- _:l......:.. "I ?._

Coverbins

0.35
0.3
0.25
0.2
0.15
0.1

o

0.05
1 2 3 4 5 6 7

m Original mML

cadence

Where Simulation ML Can Fit in a Typical MDV Project

Environment ® RTL Verification Bug hunting Coverage
e development / bugfix cycle closure
. ® o0
*Develop / Reuse components *Developer check in tests *Add additional corner case *Regress continuously until
*Create tests *Nightly runs on code changes scenarios convergence
«Add functional coverage model *Weekly complete regressions *Fill up available resources with *Analyze gap to 100%
«Ends when bug rate hits a randomized runs *Refine and create directed
suitably low threshold *Typically budgeted for a testcases
specific amount of time and «Ends with 100% coverage
given specific resources achieved or “close enough”, i.e.
: at schedule deadline
Environment Development | : Bug hunting
RTL Verification and bugfix cycle Coverage closure
| 4 Time \ | \ |
failure targeting bug hunting compression / coverage

maximization cadence

Verisium Al-Driven Verification Platform

Verisium™ Al-Driven Verification

Cadence

Wave Coverage Mined Al
data data attributes models I. l J ed A I
W 7 platform*

Design
Repository

Q git

=< PERFORCE

1/t /1) 1\ ¢

Jasper™ Xcelium™ =EUEGI Protium™ Helium™
Formal Simulation Emulation Prototyping Virtual Platform

* Cadence® Joint Enterprise Data and Al (JedAl) Platform cadence

cadence

https://www.cadence.com/go/trademarks

	Slide 1: Talent Shortages in HW Verification: Can ML Plug the Gaps?
	Slide 2: Agenda
	Slide 3: Verification Complexity Grows Exponentially And available verification engineers grows arithmetically
	Slide 4: Engineering Efficiency Lost Throughout the Flow
	Slide 5: Verification Challenge – Regression Debug
	Slide 6: Functional Verification Debug – Traditional Process
	Slide 7: Automated Machine Learning Bucketing of Regression Failures
	Slide 8: Machine Learning to Identify What Caused Tests to Fail
	Slide 9: Simulation Level ML to Improve Random Verification
	Slide 10: ML Analytics to Expose Patterns
	Slide 11: Where Simulation ML Can Fit in a Typical MDV Project
	Slide 12: Verisium AI-Driven Verification Platform
	Slide 13

